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Lean complementarity aims at giving guaranteed and computable error bounds on the solution of a non-linear magnetostatic
problem while attempting to save as much as possible the computational resources required. The main idea is to use an a posteriori
error estimate that is able to separate the error components due to the discretization, the linearization and the algebraic error of
the iterative linear solver. Once these are available, the stopping criteria for the iterative linear solver, the non-linear solver iterative
scheme and the automatic adaptive mesh refinement cycle are all chosen adaptively on the fly. The main idea is that each cycle is
stopped once one of the errors becomes predominant and, thus, any reduction of the others does not improve the solution significantly.
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I. INTRODUCTION

THIS PAPER extends lean complementarity [1] to the
non-linear curl-div system, for example by considering

the solution of a magnetostatic paradigm problem. To solve
this problem one may use the magnetic scalar potential based
formulation using edge elements [2]. That is, the magnetic field
h is decomposed as h = ∇Ω + hs, where the source magnetic
field hs is represented with edge elements.

Taking strong inspiration from [3] and [4], we devise an a
posteriori error estimator that is able to distinguish different
error components related to the discretization (ηd,h due to
the finite grain of the mesh Mh and the inaccuracy of the
numerical method), the linearization (ηl,h due to the non-linear
iterative solver scheme, i.e. the inexact Newton–Raphson or the
fixed point) and the algebraic error (ηa,h due to the iterative
linear solver). Having the different components in hand, in
fact, allows to devise rigorous and adaptive stopping criteria
for both linear (in our case an algebraic multigrid solver) and
non-linear solver.

II. THE NOVEL ALGORITHM

We describe the full algorithm with three flowcharts that
represent the three main cycles. Fig. 1 represents the cycle in
the variable h where the mesh is adaptively updated by using
the local error indicator in each mesh element T . We assume
that the initial mesh (i.e. for k = 0) is coarse and isotropic
given that no error indicator is available yet. This cycle stops
when the global guaranteed and computable error estimator for
the hth mesh Mh obtained as the sum of four error components

ηtot,h = ηd,h + ηl,h + ηa,h + ηo,h (1)

is below a user-defined constant ε. This is the global stopping
criterion of the whole adaptive simulation. ηo,h is the classical
term that takes into account the data oscillation of the sources.
The error component e, with e ∈ {d, l, a}, is evaluated from

local contributions ηk,ie,T of each element T ∈ Mh as

ηk,ie =

√ ∑
T∈Mh

(
ηk,ie,T

)2
, (2)

at the kth iteration of the non-linear solver and at the ith
iteration of the linear solver.

Fig. 2 shows the cycle in the variable k which represents the
kth iteration of the Newton–Raphson or fixed point scheme. In
each iteration of the non-linear solver one has to solve a linear
system Ak−1

h Ωk
h = bk−1h with, for example, an algebraic

multigrid solver. Here, Ak−1
h and bk−1h are in general evaluated

by using Ωk−1
h . The non-linear scheme stops the iterations

once the discretization error ηkd dominates with respect to
the linearization error ηkl . The actual threshold for being
considered negligible is specified through the constant γl set
to, for example, 0.1.

Finally, Fig. 3 deals with the solution of the linear system
with an iterative solver. First, there is an inner cycle to deter-
mine the value of ν as the first integer such that ri+ν < γr ri
holds, where ri is the residual of the linear system at the
ith iteration and γr is again a small constant (for example
0.1). This is required in order to compute the algebraic error
estimator ηk,ia as proposed in [1].

Second, when a value for ν is set, the three estimators ηk,ia ,
ηk,il and ηk,id are computed similarly to [4]. The main novelty
w.r.t. [4] is that to compute ηk,il and ηk,id we do not use a flux
quasi-equilibration but instead the explicit flux equilibration
proposed in [1]. This renders the algorithm simpler and more
efficient. The full recipe of how to compute ηk,il and ηk,id is
going to be explained in detail in the full paper. The iteration
of the linear solver stops when the algebraic error ηk,ia becomes
negligible with respect to the greater between ηk,il and ηk,id .

A. Preliminary numerical results

We tested lean complementarity on the well known Testing
in Electromagnetic TEAM problem 13 [5]. Lean complemen-
tarity is able to obtain a speed up of a factor of five in the
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Fig. 1. The main cycle in which the mesh is updated adaptively.

Start

k = 1;
Initial guess
Ωk−1
h = 0;

Solve linear
system

Ak−1
h Ωk

h =

bk−1
h ;

ηkl < λlη
k
d?

ηx,h = ηkx with
x ∈ {d, l, a};

Compute ηo,h;

End

k = k + 1;

No

Yes

Fig. 2. The iterative non-linear solver (for example, fixed point or Newton–
Raphson schemes) is inexact and the stopping criterion is chosen adaptively.

total simulation time for a given accuracy with respect to the
same simulation with the classical stopping criteria, i.e. both
the relative residual of the linear solver and the non-linear
iterative solver set to 10−8.
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Fig. 3. Solution of the linear system arising at each step of the non-linear solver
with an iterative linear solver (for example, an algebraic multigrid solver) with
an adaptive stopping criterion.
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